THERMAL GENERATION OF ELASTIC VIBRATIONS
TAKING ACCOUNT OF THE FINITE
HEAT-PROPAGATION VELOCITY
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By analyzing the solution of a problem of coupled dynamic thermoelasticity with the finite.
heat-propagation velocity taken into account, the pogsibility of its experimental determina-
tion by using acoustic methods is shown.

As ig known, the acoustic characterigtics of a subgtance are associated with its physicochemical
properiieg, including the thermophysical properties. Hence, by studying acoustic vibrations originating
in an elastic medium because of thermoelastic stresses, valuable information about the temperature and
thermophysical properties of a substance, and, particularly, about the thermal relaxation due to the finite
value of the heat-propagation velocity [1], canbe obtained during periodic heating of the specimen. If the
solution of the heat-conduction problem is analyzed for the case of periodic heating of a surface with the
finite heat-propagation velocity taken into account, then it turns out that the amplitude, the attenuation coef-
ficient, and the phase of the temperature waves depend on the magnitude of the heat velocity, where this de-
pendence becomes clearer with the growth in the frequency of the heating source {2]. It is natural to expect
that the amplitude, phase, and attenuation coefficient of the elastic vibrations which hence originate will
also depend on the velocity of heat propagation.

To clarify the nature of this dependence it is necessary to solve a coupled thermoelasticity problem
taking account of the finite heat-propagation velocity. Let us examine this problem for the one-dimensional
case of a semiinfinite space. In contrast to a humber of papers in which the pulse effect on a body is in-
vestigated, here we will study the case of a periodic, high-frequency heat flux, produced by a modulated
continuous laser beam.

The problem is described mathematically by a system of equations [3] consisting of the generalized
Fourier equation, the energy conservation equation, the equation of motion in an acoustic approximation,
Hooke's law:
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and the corresponding boundary conditions.

Let us write the system (1) in dimensionless form, as is done in [3] (the dimensionless variables are
denoted by the same letters):
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We solve the problem under the following boundary conditions:
A RAUR) = gylor,sinet —cosat), . U, 1) =0, 3)
ox

where
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—p Cy ¢ \poT,
and ¢ is the velocity of elastic volume wave propagation. -

There are no digplacements in the half-space at the initial instant and the temperature is constant;
for simplicity, let us take T(x, 0) = 8. Since there are no interual sources and the veloeity of all the per-
turbations is finite, all the partial derivatives with respect to the time are also zero everywhere at the time
t=20.

Let us apply the Laplace transformation to (2). Let us reduce the system which describes the problem
to an equation for one function U* (the Laplace transform of the digplacement). Let us also write the bound-
ary conditions in displacements by using the equations of the system (2). After simple manipulationg, the
mathematical formulation of the problem for U* is written ag
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As has been mentioned, the problem is examined in the half-gpace x > 0; hence the general solution is
U*(x, p) == Cyexp(— kyx) - Cexp (— k). (6)

Here k, and k, are the arithmetical roots of the characterigtic equation corresponding to the solution which
attenuates at infinity,
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Using the boundary conditions (5), the solution for the transform is written as
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Here U*(x, p) is an analytic function in the domain Rep > q,; it satisfies all .the conditions of the in-

version theorem and admits of extraction of a single-valued branch. Applying the inverse Laplace trans-
form, we obtain

Zotin
-
UG = j U* (x,0) exp (1) dp. (8)
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The solution (8) includes both the transient and steady parts of the process,

Since the length and time scales in the problem under consideration are small, it ig of practical in~
terest to extract the steady part of the solution from (8). The function (7) has four branch points (p;, p,, p;»
py) and two singular points of the simple pole type (p;, pg):
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Fig. 1, Dependence of the difference in dimensionless
amplitudes of acoustic vibrations (a) and additional
phase shifts (b) on the frequency of the heat flux effect.

The process to obtain such a steady solution is described in [2], and hence we do not consider it fur-
ther here, but write at once the steady solution for the digplacement:

U (x, t):—_Uo[exp (—% x) cos (mt —-Zi-x—zo)—exp (——.g—lx) cos (mt —%x—fzo )] , (9)
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The solution (9) is two waves being propagated in the one direction x > 0 at different velocities and
different attenuations. They are called fast and slow waves in the consideration of coupled thermoelasticity
problems in contrast to the sound and heat waves in solutions of uncoupled problems.

The solution of an analogous problem without the finite velocity of heat propagation taken into account
can be obtained from (9) by passing to the limit as the propagation velocity tends to infinity:
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Since there ig the possibility of heat flux in a broad frequency range acting on a semiinfinite body, it
is interesting to examine how the acoustic wave parameters vary as the frequency of the heat flux effect
changes. Let us consider the limit relationships when the frequency w — «, However, it is here necessary
to stipulate that the equations of a continuous medium are valid to frequencies on the order of 10°-10! Hz
[4]. Hence, the limit relationships can be congidered as an index of the direction of change of the appro-
priate acoustic parameters.

The attenuation coefficient y, tends to < with the increase in frequency, while the attenuation coeffi~
cient y, tends to a finite value ag w — «:
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Computations showed that one of the waves, namely, the one with the attenuation coefficient y,, atten~

uates practically completely for a carbon steel specimen on the order of 0.1 mm long under a 10 MHz fre-~
quency of the heat flux effect,

It is also interesting that the phase velocity v, grows with the increase in frequency, in contrast to the
phase velocity v, which tends to the finite value
2
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e., this wave has no dispersion at high frequencies.

For the solution without taking account of v, the attenuation coefficients and the phase velocities vary
in the same manner with the increase in frequency. Such a nature of the change in phase velocities permits
us conditionally to de signate the wave with phase velocity v, thermal, and the wave with phase velocity vy
acoustic.

The main purpose of this paper was to clarify the distinction between the solutions for the displace-
ment with and without the finite velocity of heat propagation taken into account.

Comparing the solutions (9) and (10) showed that the vibration amplitudes of the solutions (9) and (10)
tend to zero as w — . The ratio between the vibration amplitude of the solution with the heat-propagation
velocity taken into account and the vibration amplitude without the heat-propagation velocity taken into
account is not one. This indicates the distinct nature of the frequency dependence of the vibration ampli-
tude.

The additional phase shift z; of the golution (9) tends to (—7/2) as the frequency increases, while the
additional phase shift Z; of (10) diminishes as the frequency of the thermal effect increases and tends to
zero in the 1imit,

The distinct nature of the attenuation should be noted. Thus, the attenuation coefficient y, of the heat
wave (9) tends to infinity as w with the increase in frequency, but the attenuation coefficient of the heat wave
(10) tends to infinity as vw with the change in frequency. The limits of the acoustic wave attenuation coeffi-
cients tend to the finite values y, (11) and y,, where
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Therefore, the acoustic-wave parameters obtained taking account of the finite heat rate differ, for a
sufficiently high frequency of the thermal effect, from the corresponding parameters when the heat-propa-
gation velocity is assumed infinite.

The solutions obtained were computed on a "Minsk-22" electronic digital computer. In the investiga-
tions we used carbon steel at room temperature, whose relaxation time wags taken as e = 10™10gec. The
amplitude of the heat flux was q; =1 W/cm?, The results of the computation are presented as graphs.

Shown in Fig. la is the difference between the dimensignless vibration amplitudes. The maximum
difference is achieved at wrp=1 and is on the order of 10™° A These are practically indistinguishable am-
plitudes. Ths vibration amplitude itself is 103 Aatanf=10° Hz frequency of the effect.
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As is seen from Fig, 1b, the nature of the change in the additional phase shifts is substantially dis-
tinet, Thig affords the possibility of determining the relaxation time and the magnitude of the heat velocity,
respectively, by meang of experimentally measured values of the amplitude, the attenuation coefficient, and
the phase of the periodic component of the heat flux.

NOTATION

T is the temperature;

q is the heat flux;

U is the displacement in the x direction perpendicular to the surface of the half-space (x > 0);
o is the normal gstress in a plane parallel to the surface;

A is the coefficient of thermal conductivity;

] is the density;

Cp, Cy are the specific heats at constant pressure and at constant volume;

o ig the coefficient of thermal expansgion;

n is the Poigson's ratio;

G is the shear modulus;

c is the velocity of elastic volume wave propagation;

ky, ky are the arithmetic roots of the characteristic equation corresponding to the solution attenuating
at infinity;

w is the cyclic vibration frequency;

Ty is the relaxation time;

Zy ig the phase shift independent of the distance,

6 is the coupling parameter;

Uy is the vibration amplitude.
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